
A major purpose of the Techni-
cal Information Center is to provide
the broadest dissemination possi-
ble of information contained in
DOE’s Research and Ii3evelopment
Reports to business, industry, the
academic community, and federal,
state and local governments.

Although a small portion of this
report is not reproducible, it iS

being made available to expedite
the availability of information on the
research discussed herein.

‘ LA-UR -9(3-2564

, .. a ,10-,1+ N.I! .I,,.I I JIMW,I! III t s opw, i:wv lIW !Iw unwrwy d Cdhkwn,ir fIIr fhe lIIIIIW Slnles Drpdrlmvnl UI LIILIIW UIWJWIJNIII.11.I W /40!1 [.Mi .Vb

TITLF 1’KRIWRFI,INCI:];vl\l. lIATION

or ,\!i OPT IMl Zm S(hfl,,m

LA- UR--9O-2564

DE90 015058

OF Tlllt 11)}1 RISC SYS’1’EN/hooo: (:OfI1l’AtllSL)N
l]R()(:~ss()[{ ~[rl”]l q~() v];(:q-OR rR()(:~ss()Rs

!hpL’rL’(lllllJllL 111~ I ()() , ~Llw York ~y , hV1’lllhL’r
SLJBMITTED TO 12, Iyx),

I) IS(*l.AIMER

,..,,,.,,,.,.,,. , ,,#.; , ! ,,, .,,, .,, ..,.,, II ,,, ,1 ,, J ,, .!.,!!, !, .,.11! ., .!., o .. , . ,.! ,,. ,,! ,! ..,,!!, 1.,!,! 1,, ,...,@ 1,! ,.,,1. .,, .!. .,,, ,,,,,1 ,. ,!

,., ;,,,,, ,, ..,,., ,,, !.,. ,, .*.,,,,,,,, ,,, ,,, ,,, ,,, , ,,!, I ,,, ,,., ! ..!,,,, ! ,, ,., ,,,.,,...

, ,. {,. “,, ,,, ,. !,, ,., !.., 8s.1’ ‘- I- I ,f. .,l In, ,tl-,,n 1, ‘1 ‘. t,’ 1. .1. ~,,vb 1,1,,1 8,slsS: ,. ,!,,, 1?,,, .1, ,,, !!, ,.., ,,! 1,.,! , , ., [1,.,,,,.,,..,.,I ,., I , ,.,,,,

.- —...

, ,,,, !, . , ,.,

,, .1.,.

About This Report
This official electronic version was created by scanning the best available paper or microfiche copy of the original report at a 300 dpi resolution. Original color illustrations appear as black and white images.

For additional information or comments, contact:

Library Without Walls Project

Los Alamos National Laboratory Research Library

Los Alamos, NM 87544

Phone: (505)667-4448

E-mail: lwwp@lanl.gov

Performance Evaluation of the IBM RISC SysteIn/6000: Comparison
of an Optimized ScalarProcessorwith Two Vector Processors

Margaret L. Simmons and Harvey J. Wasserman

Computer Research Group

Computing and Communications Division

Los Alainos National Laboratory

Los Alamos, New Mexico 87545

ABSTRACT

RISC SystemM)OO computers are work-

stations with a mxluced instruction set pro-

cessor reeently developed by IBM This re-

port details the performance of the 0000-

series computers aR measured using a set of

portable, standard-Fortran, cumputation-

ally-intensive bench mark codes that repre-

sent ti~e scientific workload at the Los

A!arnos National Laboratory, On all but

three of our benchmark codes, the 40-ns

RISC Systcm was able to perform as well as

a single Convex G240 processor, a vector

processor that also has a 40-ns clock cycle,

and on these same codeis, it performed as

well as the FPM(X), a vector processor with

a W-ns clock cycle.

1. Introduction

In this pnper WP report the results of n

study of IBM RIS(; System/6000 ccntr~l pro-

c[’ssing unil ((; l)l,l) prrformnnco os

mensurorl by n sot of Fortrnn Iwnchnlnrks

representing the scientific worklond at Los

Alamos National Laboratory (LANLj, ‘l’he

RISC System/6000 is a reduced instruction

set computer (RISC) whose architecture may

be referred to as “superscalar” (or opti-

mizer! scalar), because the hnrdwnre can

carry out more than one instruction per

clock period,l Two RIS(; System/6000

computers were recently loiln~d to the

Advanced Computing Laboratory (ACL) at

LANL as part of u beta-testing :i~~eemcnt,

our benchmark codes hnve been used to

test an extensive list of high-performance

computers .z-s In pnrticulnr, the’y hnve been

very useful in measuring the performance

of a wide vnriety of vector processors, I11

this pnper we wi!l compnrc thv performuncc

of the new IIIM RIS(; Systwrn with two of

thesr vector muchines, cspucia]ly u sin~l(’

processor of the (hnvt’x (;-240 system. WC

concentrate on this rnncbine simply bccausc

it hns the same CP{J clock cyclo ns onc of’

the I~]M RISC Syst(~ms, As SUC}l, t,h(} (i[ltjl

nllow direct comparison of th(I (’fl’ici(’ncy of’

d ~’wt or l~r(wossor r(ll[llivo to t)l;ll of 1111opt i.

1

mized scalar processor, the only such

comparison of which we are aware. The

other vector proressor we include is the

Floating Point Systems FPS-500 FPX.

3. Results

3.1 Performance on Primitive Vector

Operations

Two of our benchmarks, VECOPS and

VECSKIP, are designed to measure

performance of vector operations as a

fllnction of vector length for several dif-

ferent memory access patterns, Although

the RISC Systems do not have vector

capability, the memory is organized as a

hierarchy composed of registers, n

(relatively) large, fast data cache, and a

larger, somewhat slow~r main memory,

on an architecture such as this these codes

can measure the effect on performance of

in-cache residency of data VS, out-of- cuche

requests. In Table 1, we report r~tes for

“vector operations” as a functim of “vector

length,” in order to maintain consistency

with the. corresponding data from a vector

comput. cr, given in Tohle 2, Ilowever,

becuusc the RISC Systems nre not vector

computers, these terms refer to ~n iterntivc

operation on arrnys, still denoted as “Vi, ”

“V2,” [l.c., Find u pnrticulnr loop length of

interest. In both VItCOPS and VECSKIP,

thrrc is an inner loop that prrforms t,hr

indicntod operation, wh]le an outor loop

simply repents this innrr loop enough tim(is

to ~ot mmsurnl~lr rftsults,

A plot of rnt(l vs. v(lctor lvn@h for t.hv

op(’rnt ion V1 = V2 + V:] on thv 40 ns IIIM

ltlil(~ Syst(’n: is shown ill ~i~w]r(, I, ‘1’ho plot

shows a dependence on vector length that is

characteristic of a vector computer; this

occurs on the RISC System because of the

latency associated with loading the

operands (and storing the results) through

the cache. The time, T, to carry out a vector

operation of length n, has been described by

Hockney8 in terms of an asymptotic rate,

r m, and a vector half-length, n 112 (eq, 1).

0thers5~9~10 have described the same

functionality in terms of a linear mode]

with a startup time, Ts, and an element

time, Te (eq. 2).

T=(n+nl/2)/r\m (1)

T= T8+n Te (2)

These two descriptions are algebraically

equivalent, as noted by Luheck,5 In Figure

1, the dot~ ore sbowi~ by Inrge dots (*) wbil[l

the smooth curve that has been drtiwn

represents an approximate fit to !he dntii

using the Iiockney formulation with r- :.

8.2, and nl/2 = 2.45. A fit using the straight

line methoa to these data will he discussed

in more detail below,

In the operation that wns cnrried out tG

produce Figure 1, all of the re(iuircd dutll,

the two operands V2 nnd V3, and the result,

VI, fit within the (M-khyte cnchr on th(l 40.1)s

RISC System, Significantly different

results tire observod when thv nmount of

dnt,n required for the upcrntio]i exceeds th(t

cnpncity of the cnch(~, or when th{~ ur.

rungemcnt of d[ltll in m[~in mpmory IS SUC])

th.lt t,i)l} m(~n]ory-cl~f”h[~ m:lppinfl is norl -

optimnl. An cxIIn\I,lc o{. ftlis is shown ill

Figurtl 2, which dvpirts n l)li~t of” rntv vs.

vector l,tl~:ttl for tl~v o~wrllti(~l~ \’1 L V2 * V;!

2

0 20 40 60 00 100 120

Vector Length

Figure 1. Plot of rnte in millions of
f!oating-point operations per second
(MFLOPS), VS. vector length for the
“’vector’”operation VI = V2 + V3 on the 40-
ns IBM RISC System16000. Experimental
dnta are represented by bullet~(”), while
the smooth curve represents a calculation
using the Hmkney pnrnrneters r- - 8.2
MFLOPS and n ,m= 2.4.5.

12

4
0 250 500 7:J 100012501500

vector length

Figure 2, Plot of raw (MFI.OPS) W. vertnr
length for VI ■ V2 “ V3 + V4* V5 on the !iO-
nn IBM RIS(~ Syntem/6000,

+ V4 “ V5 on tho 50-IIS IIIM RIS(!

,sysll’ 111/(;()[)().

This machine, contains a 32-kbyte

cache. The overall shape of the curve in

Figure 2 haa been qualitatively described

previously using similar data coilected on a

single processor of the Alliant FX system. 11

The initial part of the curve shows the same

functionality as in Figure 1. Cache misses

become significant at about vector length

225, where a steep drop in rate is observed,

and at a vector length of about 1100, the rate

becomes constant. At this point the observed

rate is largely a function of the rate at

which the cache line (64 bytes) can be

refilled from main memory. The observed

rate of about 5 MFLOPS corresponds to a

result every 15 clock periods, which is the

number of clock p ;riods required to reload a

cache line following a miss, The sharp

drop in rate shortly after vector length &00

may be due t.o the total capacity of the cuchc

being exceeded, since the maximum vector

length that can be nccomodated for five

vectors is 819 (double-precision) words.

While a detailed explanation of th~

cache behavior is beyond the scope of this

paper, we note that pclformnnce cnn be n

sensitive function of the relative stnrting

addresses (in memory) of the nrruys

involved nnd the orgnniznlion of the cuchr,

as well aa the loop lcngth~ of interest and

the loop atrides. The 50.ns RISC System hns

512 cache lines a.. d 128 cnchc sots, It is

possible to define “pnthologiciil” cnsrs

where each of the five nrrnys ar~ mnppvd

inta the same cache line nnd cnchc wt. For

the five-vector syntem, thi~ menns thnt every

rcfcrencr to the fltlh vector will roquirc

rclonding n cnchr Iiur. Ill Su(’h n CIIH’,

rvrn with unit stridr, wit hnv(’ ohsvrvvd

rates of less than one MFLOP per second at

all vector lengths.

Table 1 lists the megaflop rates obtained

for a variety of “vector” operations on the

40-ns IBM RISC System. For comparison,

the corresponding data from a single

processor of a Convex C-240 min -

isupercomputer are given in Table 2. We

can make the following qualitative

comparisons based on the data from the two

machines. First, the IBM RISC System

clearly has an advantage at short vector

lengths. This advantage is quite lopsided at

vector lengths as long as 25 or so (not shown

in the Tables), At longer, asymptotic vector

lengths, differences between the two

machines mostly vanish, with two

exceptions. The exceptions, which are dis-

cussed below. are for the operations V = V +

Sarld V= S” V+ S”V.

Table 3 lists the results of least-squares

fits to the 40-ns IBM RISC System data

using equation (2). The value of the start-up

time, T-, given in Table 3 for A(I) = B(l) +

S, is much smaller than the vnlue of 1922

nanoseconds (nsj we found for the Convex.3

This accounts fcr the substanti~l difference

in rates between the two machines at very

smnll vector lengths.12

To understand the differences in rates

at lnrger vector lengths we must look at

what the model predict: for the rnte at which

each machin~ can produce n result for each

operntion, ~hown in the third column of

Table 3, It is nt this point wc Iwgin to Rtw

evidence of the instruction.level pnrnl -

Iulism providcrl hy tho IIIM RIS(! System.

Ccnsirlcr, for exnmptc, tho opcrnti~l]

A(l) = B(l) + (:(l). This operntirm rvquirr~

Table 1. Rate (MFLOPS) for Selected Vector
Operations ae a Function of Vector Length on the

40-ns IBM RISC Sym.ern/6000

Vector Length
Operation 10 50 100 500 1000”

V=v+s 8.0 95 9.7 99 99
v - v + s (I=1,N,2) 69 95 9.8
V = V + S (I=lpN,23) z ;; 69 OB 0.8
V.v+v 6.3 8.0 8.0 82 62
V. V+S*V 12.7 16.0 16.0 16.4 16.4
V. V*V+V 10.1 121 121 12.3 12.3
V.s”v+s”v 173 18.4 18.4 18.5 17.8
V. V” V+V*V 12.4 14.6 14.6 14.8 14.8
V(I)= V(])+V*V 72 82 &l 82 w

Table 2. Rate (MFLOPS) for Selected Vector
Operations as a Function of Vector Length on a

Singl ? Prmeseor of the Convex C.240

Vectm Length
Operotim 10 50 100 500 1000

V.v+s 3.9 92 10.5 11.6 11.7
v - v + s (1.1,N,2) 24 8.7 10.8 11.1 11.1
V = V + S (1=1J4,23) 23 8.7 109 11.1 11.1
V=v+v 3.3 69 7.5 7S 79
V. V+S*V 62 13.4 14.11 15.fI 15.8
V.v”v+v 5.4 10.7 11.4 11.FI 11.8
\’=s*v+s*v 7.5 199 Z2.o 23.3 23.5
V.v”v+v”v 6.5 13.2 139 14.4 14.5
v(r)= V(l)+v *v 3.1 63 6.8 72 7Z

the sequence of instructions L(MD B, LOAD

C, ADD, and STORE A, which consumes

four clock periods for ench result.

However, the dntn indirate a time-pcr-

elemcnt of 120 ns, which corresponds to

three clock periods on the 40-ns RISC

~Sy8tem The RISC System accomplishes

this hy executing a (pre-)lond for onc of thr

operands at thr snrnc time thut it performs

the floating-poirlt oprrntion.

TAhlP 3 includes [In ~xplunnt. ion of how

the RISC SyRtcm cnrries out srvcrnl rcp -

rescntntivc vector oprrntions, showing thv

Rtmps thut Rru rrprutod in rnrh loop nfhr tho

pipr]invs huvo hcrtl londod, Ill ttnch CNW,

tho wqui)ncv of ilistructions illvolv(is n pr[)-

4

fetch being performed in parallel with a

floating-point operation. By so doing, the

RISC Systim is able to eliminate one clock

period per iteration from the sequence that

would otherwise be required in a single-port

vector computer such as the Convex. This

also allows the RISC System to achieve the

same flop rate per cycle as an IBM 3090NF

pr9cessor.13

It is interesting to compare the effi-

ciency of the RISC Syst.an/6000 with that of

a Convex processor for the operation A(I) =

S1 ● B(I) + S2 ● C(l), On the Convex this is

a “three-chime” operation, involving the

sequence LOAD C - MULTIPLY S2

(chained), LOAD B - MULTIPLY S1 - ADD

(chained!, followed by STORE A. Thus the

Convex can produce a result every three

clock cycles, suggesting a peak rate of 25

MFLOPS; about 24 MFL(lPS was obssrved.

The RISC System, on the other hand, re-

quires four clocks per result, suggesting a

peak rate of 18.75 MFLOPS, while about 17

MFLOPS are oLscrved. This is the only

operation in the group we have studied for

which the rate on n Convex processor can

exceed the rate on the RISC System,

Apparentlyl the RISC System compiler is not

extracting all the available parallelism.

The operation seems to involve the sequence

LOAD Bit MULTIPLY S2, Ci - kad Ci+l

fsimuit~neously), MULTIPLY / ADI),

STORE A. In principal, the multiply should

occur simultaneously with the LOAD l’lil

and the multiply / add should occur

simultaneously with the LOAD Ci+l.

At thi~ time we cannot explain the re.

Bult,~ for :he RISC Systrm on the opcrnt.ion V

= V + S, which runs at the nggre~ntc rate of

one result every 2.5 cycles (lLI MFLOPS

asymptotic rate). An asymptotic rate of

about 12.5 MFLOPS, corresponding to one

result every 2 clocks, is expected, and an

examination of the generated code shows

that the instruction sequence given in Table

3 is nominally correct. Further explanation

of the V = V + S (and V = V ● S) operation is

required.

3.2 Comparison of Performance on Larger

Benchmarks

In Table 7 we show benchmark execu-

tion times for the 40-ns RISC System along

with those from a tingle processor of the

Convex C-240 system.3 A complete

description of the C-240 has appeared

elsewhere.14 Here, we merely note that it too

is a demand-paged dynamic-memory

system, and it has n 4-kbyte scalar data

cache, independently pipelined functional

units, and eight 128-element 64-bit vector

registers. Our benchmark of the C-240 was

carried out in July, 1989.

A description of the benchmark codes

mny be found in the appendix to Reference

2, All codes use 64-bit precision, Timing

on the IBM RISC System was carried out by

reading the 64-bit real-time clock using an

IBM-suppiied routine.

We consider first severnl codes in our

benchmark set that do not vecturize, These

are GAMTE13, for which wo estimate the

level of vectorizntion is nlmut 2iI%, and

ESN, SCALGAM, and P11OTON, w+ich do

not vectarize nt all, In a previous rcport2 wu

compared thv performuncu of thr 40. IIH II)M

RISC SyA.ern/6000 with two othrr IUS(!-lNIMV1

,P)

Table 3. Startup Times, T@, and Execution Times, ‘re Derived from tie Least-%unres ~t, nnd
Execution Sequences for Various Vector Operations on the 40-ns IBM RISC System/6000

Operation

A(I) = B(I) + S

MI) = B(I)+ S (I = 1, N, 2)

A(1) = B(1) + C(I)

A(1) = B(l) + S ● C(I)

A(I) = B(1)+ C(l) “ Dtl)

A(1)=S1*B(1)+S2” C(I)

A(I) %BII)* C(I) +I?(I)* E(l)

253

315

35

240

Tens
‘clnck~)*

100(2.5)

——

100(2.5)

125(3)

120 (3)

160(4)

150(4)

200(5)

Execution Sequence After Startup

1) Add Bil S;h? B i+l

2) Store A

Same as above

1) kbadci

2) Add Bij Ci ; kd Bi+l

3) store i$

1) bad Ci

2) h’fu]tiply / Add B,, S,, C, : Load Bit,

3) Store&

1) lmad D,

2) bad B,

3) Multiply ~Add B,, C,, D, ; Lmnd C,,,

4) Store ~

1) I.m.adB,

2) Multiply S2, Ci; kid C,.l

3) Multiply / Add S1, B,, result from 2)

3) Sbre &

1) Lmd t),

2) Lmad C,

3) Multiply Eij Dll ; L~d B14,

4) Multiply / Add B,, C,, res. from 3); Land E,,,

5) Stcme+

● The tim~-per-element is given firnt in nmmnocrmdm, nnd then no the number of CPII clock pw’iod~
tn w!, ich this vnlue cw-renpnndn.

computers, the S[JN-4/390 nnd the I)igitnl could vcctorizr. }Iowmwr, t.hc Convex hns

Equipment Corporatif.)11 II ECstntion-3100, the advuntngc on thesr codes, and th(’

The result~ of compnring the RISC System relative pw-forrnnncc of the RISC System is

with the Convex are almost directly opposite best on the ~calnr rorhs in t.hu honchrnnrk

thosr for thr SIJN nnd II E(~stntion. Rolutivc wt.. The RISC Systvm runs S(~A1.(iAM nnd

to the S(JN n~d thv Dlt(!stntion, the IBM PII(3TON nbout 1,5 timtm fnst(~r thnn doos II

Itl!;(; Systcm purformd I)(!st on COCIVSthut ~in~lc procvssor or tht’ (!o IIvrx C-24(J,

[;

Table 4. Comparison of Benchmark Execution
Timesl for the 40-nB LBM RISC System and a

Single Processor of the Convex C-240

Me

HYDRO
VGAM
MATRIX
WAVE

FFT
GAMTEB
SCALGA.M
PHOTON
INThfC
ESN

Convex
(X240
Time

74.6
44

140.0
4102
5402

235
14.7
10.7

2421
3382

31.1
419

40-rm IBM
RISC Sys~m

Time

ml!
7.0

147.0
=3
4973

Xu
11.5
8.1

163.4
213

18.6
18.0

Ratio:
‘C-240 1

‘IBM

%
1.0
1.1
1.1
12
13
13
15
15
1.7
23

lTimes ere in seconds on a dedicated machine.

although a critical fix to the IBM Fortran

DINT intrinsic function, a major time

consumer in these two codes, was required.2

On the vectorized codes in the bench-

mark set, performance of the two machines

is mixed, On MATRIX, LSS, LSS300,

WAVE, and FFT, the two machines are

bnsically equivalent. Howe’~er, a single

Convex C-240 processor runs HYDRO and

VGAM much faster than the 40-ns RISC

System. The vectorizable code that the RISC

System runs fastest relative to the Convex is

FFT, which involves short vector lengths

that expose the relatively larger vector

startup times on the Convex. In spite of

comparable performance for MATRIX and

LSS on the C-240 and RISC System, a single

processor of the Convex C-240 runs HYDRO

1.6 times faster than does the 40-ns lBM

RISC System. HYDR!3 involves vectors that

are accessed with a stride of 100 and

therefore the RISC System cache cannot

support the required memory bandwidth,

Although the Convex processor also has 8

cache, it is used only for scalar data. A

more detailed discussion of t,~e effect of

bringing “vectors” of data through a cache

on HYDRO may be found in the IBM-

3090/VF benchmark, where similar

degradations in rate were ob~erved, 15

The Convex runs the VGAM17 5enc},-

mark about 1.7 times faster than the 40-ns

RISC System. This code involves many

gather operations at large vector lengths,

which strongly suggests that the RISC

System may again be suffering large

numbers of cache misses.

Finally, we report preliminary results

for PUEBL03D, a new code that is to bscome

part of our standard benchmark sui$e.16

PUEBL03D is a Lagrangian hydrod)nam.

Ics code used to model point ~xplosions in

space. The code is highly vcctorizable,

although Cray compiler directives are cur-

rently included. Results are shown in

Table 5, in which several levels of optimiza-

tion for the Convex C-24(I nre included.

Tnble 5. Camparimn of PLlEBL031’) Execu~lon Timesl for the Convex C-240
nnd the 40. nn RISC Sy~tem

40- n8 RISC Sy8tem Conucx C.240 Notvfi
Time Time

979.9 (231.4) lW.8 Single-processor Convex; no compiler directives
88.8 Single. proccumor Convex with compiler dirrccivcn
50.0 Four. prurenmw (%nvrx

lTimes nre irl wcondfi on n dodicnted mnchin~,

7

This is the only instance in this paper in

which multiprocessor results are shown.

PUEBL03D amplifies the problems as-

sociated with use of the RISC System cache

on vector codes. The code is set up to run a

grid of size 32 X 32 X 32 and arrays are

initially dimensioned to this size. Thus,

the 32K elements of this grid all map to the

same cache set. This is why the

performance for the 40-ns RISC System (979

seconds) is about 20% of the single-processor

Convex performance. Because of the way

the code is set up, it is impossible to change

the array dimensions without changing the

size of the problem that is run. So we ran a

slightly larger case, 33 X 33 X 33, on the

IBM. The execution time for this larger,

‘ore-mapped” problem is 231 seconds, -25%

of the time for the smaller problem, and

closer to the performance of the (single-

processor) Convex without compiler

directives. The Convex C-240 also achieves

a speedup due to automatic concurrent-vector

computation on PUEBL03D, with the

execution time decreasing to 50 seconds.

Table 6 presents a comparison of the 40-

ns RISC System with another vector

computer, the Floating Point Systems FPS-

500 FPX. This machine has a 30-ns clock

cycle, The FPS-500 processor consists of a

RISC scalar processor rated at 33 MIPS and

a vector processor containing eight 1024.

element (64-bit) vector registers. We

benchmarked a single-processor FPS-500

containing 128 Mbytes of memo~. We used

a beta-release of the FPS Version 3 Fortran

compiler, which, with use of a compile-line

option, inlined several intrinsic functions,

notably DINT in SCALGAM and PHOTON.

The FPS-500’S performance exceeds that

Table 6. Compariwm of Benchmark Executior
Timenl for the FPMOO and the 40-ns RISC

System

PUEBLO-

i?~RO
VGAM

WAVE
MATRIX
SCALCAM
PHOTON

GAMTEB
INi’MC
FFT
ESN

FE%L500
Time

97.0

792
4.1

4855
=3
170.0
!ZM2
3103

S.7
14.3
38.8
33.1
(M.8

40-ns IBM
‘Time

979.9
(231.4)
XH3.tl

7.0
4973
3643
147.0
163.4
221.3

202
8.1

18.6
11.5
18.0

Ratio:
TF~.500 /

‘IBM

0.1
(0.4)
0.4
0.6
1.0
1.1
12
1.4
1.4
15
lB
21
26
3.1

lTimes are in seconds on a dedicated
machine.

of the 40-ns RISC System on HYDRO and

VGAM, again because the non-contiguous

access to memory in these codes causes too

many cache misses on the RISC System,

and on PUEBL03D, due to the cache

alignment problems discussed above. Tne

relative ordering of the codes in Table 6 is

roughly the same as it was in Table 4,

except for the effect of the FPS-500’S longer

vector registers on LSS, LSS300, and FFT.

4. Conclusions

In a previous paper we compared the per-

formance of the IBM RISC System/6000 ma-

ch]nes with other R] SC-based computers.2

We reported that the biggest advant~ge the

“superscalar” IBM architectures had the

over other RISC-based systems was on the

vectorizable floating-point codes in our

benchmark set. This was particularly true

for US and MATRIX, because these codes

are dominritcd by &he SAXPY opcrntion, and

thus could take aavul]tnge of the RISC

System’s pipelined multiply-add instruc-

tion.

It is not surprising that the IBM RISC

System held this advantage over the more

conventional RISC systems on vectorized

codes. In general, vectorization represents

a highly-ordered form of computation that is

amenable to any highly pipelined architec-

ture, of which the RISC System/6000 is one.

An important question, though, is whether a

highly pipelined (super) scalar machine can

ach]eve perfmmancc comparable to that of a

vector processor. This study has provided

some answers to this question.

We compared the IBM RISC System/6000,

a machine with no vector capabilities, with

two representative mid-range vector pro-

cessors. (ln all but th~ee of our benchmark

codes, the 40-ns RISC System was able to

perform as well as a vector processor

having the same CPU clock cycle, and on

these same codes, it performed as well as a

vector computer having a faster CPU cycle.

On codes that are largely scalar in nature,

the RISC System performed better than both

of the vector machines, possibl:’ because of

the RISC System’s novel branch pre-

diction/execution capabilities as well as its

decreased pipeline startup time. The vector

machines gained more of an advantage

over the IBM workstations as vector lengths

increased, and only on the codes that

accessed memory with large strides did the

vector processors perform significantly

better than the IBM machine. In these

cases, the cache on the RISC System

prevented the hardware from maintaining

a fully loaded floating-point pipeline. The

cache is the only “weak Iin!:” that we have

been able to discover in the RISC

Systern/6000 architecture. Many of the codes

developed at Los Alamos use constant non-

unit strides through memory because the

codes were developed for the Cray Research

line of computers, on which the penalty for

non-unit strides is less significant than on

other architectures.5

Finally, we remind the reader that the

o~r benchmarks are intended to represent

(#he scientific computing workload at LA.NL.

Benchmarking is a highly workload-de-

pendent endeavor, anr; thus one must use

caution when comparing our results with

those obtained using other workloads.

A&nowledgementa

We wish to thank many people at IBM,

John MacDonald, Cecil Severs, Deanna

Collins, Minerva Carrera, Steve Vaughan,

and particularly Tung Nguyen, for show-

ing a great deal of enthusiasm during our

joint-study project. We also thank Ann

Hayes, Jerry DeLapp, and Andy White of

the Los Alamos Advanced Computing Labo-

ratcq for making generous availability of

ACL resources. We are indebted to Ronald

Gray of Convex Computer Corporation fcr u

great deal of help in running our bench-

mark codes on the C-240, to Chuck Niggley

of FPS Computing for help in running our

benchmarks on the FPS-500, and to Olaf

Lubeck and James Moore of LANL for

helpful discussions concerning cache

behavior.

Refemnan) and Notes

[11

[21

[31

[4]

[51

[cl

[71

[81

[91

IBM RISC Systemf6000 Technology,
SA23-2619, International Business Ma-
chines Corporation,Austin, TX.

M. L. Simmons and H. J. Wasserman,
“Los Alamos Experiences with the IBM
RISC Systerd6000 Workstations,” Los
Alamos National Laboratory report IA
11831-MS (1890).

R. J. Koskela, M. L. Simmons, and H. J.
Wesserman, “Performance Characteri-
zation of the Convex C-240 Computer Sys-
tem,”’ Los Alamos National Laboratory
report LA- 11769-MS (FebruaV, 1999).

H. J. Wasserman, “Los Alamos Na-
tiona! Laboratory Computer Bench-
marking 1988,” Los Alamos National
Laboratory report LA-1 1465-MS
(December, 1988), and references
therein,

0, M. Lubeck, “Supercomputer Perfor-
mance: The Theory, Practice, and Re-
sults,” Los Alamos National Laboratory
repwt LA-11204-MS (1988).

International Business Machines Corpo-
ration, “Using the AIX Version 2.2.1 Op-
erating System, ” IBM publication
#SC23-2007-0, April, 1988. An updated
version of this manual, designed espe-
cially for use with AIX Version 3.1 on
the RISC Systems, will be available
soon.

International Business Machines Corpo-
ration, “IBM AIX RISC/xxx XL Fortran
V 1.1 User’s Guide,” IBM publication
#SC09-1257-00, October, 1989.

R. W. Hockney and C. R. Jesshope, Par-
aflel Computers (Adam. Hilger, Bristol,
1981).

0. Lubeck, J. Moore, and R. Mencie~., ‘“A
Benchmark Comparison of Three Su-
percomputers: Fujitsu VP-200, Hitachi
S810/20, and CRAY X-M P/2,” IEEE
Computer, 18’ 1985) 10-29.

[10] 1. Y. Bucher and M. L. Simmons, “A
Close Look at Vector Performance of
Register-to-Register Vector Computers

and a New Model, ” Los Alarnos Na-
tional Laboratory document LA-UR-86-
3886 (May, 1987).

[ii] W. Abu-Sufah and A. D. Maloney,
“Vector Processing on the Alliant FX/8
Multiprocessor,” in Proc. 1986 Xnternat,
Con~ Parallel Processing, IEEE Com-
puter Society, 1986, pp. 559-566.

[12] The value of Ta for the Convex was ob-
tained using a linear model in which
the “stripmine” time, the time to reload
the vector registers after each 128 have
been processed, was included.

[131 P. Carnevali and M. Kindelan, “A
Simplified Model to P~edict the l?erfor-
mance of Fortran Vector Loops on the
IBM 3090/VF,” Comput. 13 (1990) 35-46.

[141 M. Chastain, G. Gostin, J. Mankovich,
and S. Wallach, “The Convex C240 Ar-
chitecture,” in Froc. Supercornputing
’88, IEEE Computer Society, 1988, pp. 321-
329.

[151H R. G. Brickner, H. J. Wasserman, A.
Hayes, and J. ‘W. Moore,

“Benchmarking the IBM 3090 with Vec-
tor Facility,” Los Alamos National Lab-
oratory document LA- UR-86-3300
(September, 1986).

[161 PUEBL03D, written by Eugene Sym-
balisty of LANL, is a “stripped-down”
version of the CAVEAT code. See F. L,
Addessio, et al., “CAVEAT: A Computer
Code for Fluid Dynamics Problems with
Large Distortion arid Internal Slip,” Los
Alamos National Laboratory report LA-
106I3-MS (1986).

[171 P. T, Burns, M. Christon, R.
Schweitzer, O. M. Lubeck, H, J.
Wasserman, M. 1., Simmons, find D. V.
Pryor, “Vectorization of Monte Carlo
Particle Transport: An Architectural
Study Using the LANL Benchmark
‘GAMTEB’,” Proc. Supcrcomputing ’89,
IEEE Computer Society, 1989, pp 10-20.

10

